Research led by the Georgia Institute of Technology found that common mouth bacteria responsible for acute periodontitis fared better overall when paired with bacteria and other microbes that live anywhere but the mouth, including some commonly found in the colon or in dirt. Bacteria from the oral microbiome, by contrast, generally shared food and assistance more stingily with gum infector Aggregatibacter actinomycetemcomitans, or Aa for short.


Like many bacteria known for infections they can cause -- like Strep -- Aa often live peacefully in the mouth, and certain circumstances turn them into infectors. The researchers and their sponsors at the National Institutes of Health would like to know more about how Aa interacts with other microbes to gain insights that may eventually help fight acute periodontitis and other ailments.
"Periodontitis is the most prevalent human infection on the planet after cavities," said Marvin Whiteley, a professor in Georgia Tech's School of Biological Sciences and the study's principal investigator. "Those bugs get into your bloodstream every day, and there has been a long, noted correlation between poor oral hygiene and prevalence of heart disease."
Unnatural pairing
_______________________
The findings are surprising because bacteria in a microbiome have indeed evolved intricate interactions making it seem logical that those interactions would stand out as uniquely generous. Some mouth microbes even have special docking sites to bind to their partners, and much previous research has tightly focused on their cooperations. The new study went broad.
"We asked a bigger question: How do microbes interact with bugs they co-evolved with as opposed to how they would interact with microbes they had hardly ever seen. We thought they would not interact well with the other bugs, but it was the opposite," Whiteley said.
The study's scale was massive. Researchers manipulated and tracked nearly all of Aa's roughly 2,100 genes using an emergent gene tagging technology while pairing Aa with 25 other microbes -- about half from the mouth and half from other body areas or the environment.
They did not examine the mouth microbiome as a whole because multi-microbial synergies would have made interactions incalculable. Instead, the researchers paired Aa with one other bug at a time -- Aa plus mouth bacterium X, Aa plus colon bacterium Y, Aa plus dirt fungus Z, and so on.
"We wanted to see specifically which genes Aa needed to survive in each partnership and which ones it could do without because it was getting help from the partner," said Gina Lewin, a postdoctoral researcher in Whiteley's lab and the study's first author. They published their results in the Proceedings of the National Academy of Sciences.
Story Source:
Materials provided by Georgia Institute of Technology. Note: Content may be edited for style and length.

No comments:

Post a Comment